Tuyển tập trắc nghiệm ứng dụng đạo hàm
THÔNG TIN TÀI LIỆU:
- · Tên File: Tuyển tập trắc nghiệm ứng dụng đạo hàm
- · Tác giả: Nguyễn Thế Út
- · Chủ đề: Toán học 12
- · Số trang: 83
- · Dung lượng: 932KB
Trích tài liệu:
§1. Sự đồng biến và nghịch biến của hàm số.Dạng 1: Xét tính đơn điệu của hàm số cho bởi công thức.
Dạng 2: Xét tính đơn điệu dựa vào bảng biến thiên, đồ thị.
Dạng 3: Tìm tham số m để hàm số đơn điệu.
Dạng 4: Ứng dụng tính đơn điệu vào các bài toán đại số.
§2. Cực trị của hàm số.Dạng 1: Tìm cực trị của hàm số cho bởi công thức.
Dạng 2: Tìm cực trị dựa vào BBT, đồ thị.
Dạng 3: Tìm m để hàm số đạt cực trị tại 1 điểm x0 cho trước.
Dạng 4: Tìm m để hàm số, đồ thị hàm số bậc ba có cực trị thỏa mãn điều kiện.
Dạng 5: Tìm m để hàm số, đồ thị hàm số trùng phương có cực trị thỏa mãn điều kiện.
Dạng 6: Tìm m để hàm số, đồ thị hàm số các hàm số khác có cực trị thỏa mãn điều kiện
§3. Giá trị lớn nhất và giá trị nhỏ nhất của hàm số.Dạng 2: Xét tính đơn điệu dựa vào bảng biến thiên, đồ thị.
Dạng 3: Tìm tham số m để hàm số đơn điệu.
Dạng 4: Ứng dụng tính đơn điệu vào các bài toán đại số.
§2. Cực trị của hàm số.Dạng 1: Tìm cực trị của hàm số cho bởi công thức.
Dạng 2: Tìm cực trị dựa vào BBT, đồ thị.
Dạng 3: Tìm m để hàm số đạt cực trị tại 1 điểm x0 cho trước.
Dạng 4: Tìm m để hàm số, đồ thị hàm số bậc ba có cực trị thỏa mãn điều kiện.
Dạng 5: Tìm m để hàm số, đồ thị hàm số trùng phương có cực trị thỏa mãn điều kiện.
Dạng 6: Tìm m để hàm số, đồ thị hàm số các hàm số khác có cực trị thỏa mãn điều kiện
Dạng 1: GTLN, GTNN trên đoạn [a; b].
Dạng 2: GTLN, GTNN trên khoảng.
Dạng 3: Sử dụng các đánh giá, bất đẳng thức cổ điển.
Dạng 4: Ứng dụng GTNN, GTLN trong bài toán phương trình, bất phương trình, hệ phương trình.
Dạng 5: GTLN, GTNN hàm nhiều biến.
Dạng 6: Bài toán ứng dụng, tối ưu, thực tế.
§4. Đường tiệm cận.Dạng 1: Bài toán xác định các đường tiệm cận của hàm số (không chứa tham số) hoặc biết BBT, đồ thị.
Dạng 2: Bài toán xác định các đường tiệm cận của hàm số có chứa tham số.
Dạng 3: Bài toán liên quan đến đồ thị hàm số và các đường tiệm cận.
§5. Khảo sát sự biến thiên và vẽ đồ thị hàm số.Dạng 1: Nhận dạng đồ thị.
Dạng 2: Các phép biến đổi đồ thị.
Dạng 3: Biện luận số giao điểm dựa vào đồ thị, bảng biến thiên.
Dạng 4: Sự tương giao của hai đồ thị (liên quan đến tọa độ giao điểm).
Dạng 5: Đồ thị của hàm đạo hàm.
Dạng 6: Phương trình tiếp tuyến của đồ thị hàm số.
Dạng 7: Điểm đặc biệt của đồ thị hàm số.
Nếu thấy tài liệu có ích hi vọng các bạn ủng hộ trang web bằng cách like và theo dõi địa chỉ page chính thức của Tài Liệu Blog tại đây nhé: https://www.facebook.com/TaiLieuBlog/
💰Ủng hộ blog: https://unghotoi.com/1546792457ngwn4
Tags:
Toán 2019